(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
a(a(f(b, a(x)))) → f(a(a(a(x))), b)
a(a(x)) → f(b, a(f(a(x), b)))
f(a(x), b) → f(b, a(x))
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted CpxTRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
a(a(f(b, a(z0)))) → f(a(a(a(z0))), b)
a(a(z0)) → f(b, a(f(a(z0), b)))
f(a(z0), b) → f(b, a(z0))
Tuples:
A(a(f(b, a(z0)))) → c(F(a(a(a(z0))), b), A(a(a(z0))), A(a(z0)), A(z0))
A(a(z0)) → c1(F(b, a(f(a(z0), b))), A(f(a(z0), b)), F(a(z0), b), A(z0))
F(a(z0), b) → c2(F(b, a(z0)), A(z0))
S tuples:
A(a(f(b, a(z0)))) → c(F(a(a(a(z0))), b), A(a(a(z0))), A(a(z0)), A(z0))
A(a(z0)) → c1(F(b, a(f(a(z0), b))), A(f(a(z0), b)), F(a(z0), b), A(z0))
F(a(z0), b) → c2(F(b, a(z0)), A(z0))
K tuples:none
Defined Rule Symbols:
a, f
Defined Pair Symbols:
A, F
Compound Symbols:
c, c1, c2
(3) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
A(
a(
f(
b,
a(
z0)))) →
c(
F(
a(
a(
a(
z0))),
b),
A(
a(
a(
z0))),
A(
a(
z0)),
A(
z0)) by
A(a(f(b, a(x0)))) → c(F(f(b, a(f(a(a(x0)), b))), b), A(a(a(x0))), A(a(x0)), A(x0))
A(a(f(b, a(f(b, a(z0)))))) → c(F(a(f(a(a(a(z0))), b)), b), A(a(a(f(b, a(z0))))), A(a(f(b, a(z0)))), A(f(b, a(z0))))
A(a(f(b, a(z0)))) → c(F(a(f(b, a(f(a(z0), b)))), b), A(a(a(z0))), A(a(z0)), A(z0))
A(a(f(b, a(x0)))) → c
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
a(a(f(b, a(z0)))) → f(a(a(a(z0))), b)
a(a(z0)) → f(b, a(f(a(z0), b)))
f(a(z0), b) → f(b, a(z0))
Tuples:
A(a(z0)) → c1(F(b, a(f(a(z0), b))), A(f(a(z0), b)), F(a(z0), b), A(z0))
F(a(z0), b) → c2(F(b, a(z0)), A(z0))
A(a(f(b, a(x0)))) → c(F(f(b, a(f(a(a(x0)), b))), b), A(a(a(x0))), A(a(x0)), A(x0))
A(a(f(b, a(f(b, a(z0)))))) → c(F(a(f(a(a(a(z0))), b)), b), A(a(a(f(b, a(z0))))), A(a(f(b, a(z0)))), A(f(b, a(z0))))
A(a(f(b, a(z0)))) → c(F(a(f(b, a(f(a(z0), b)))), b), A(a(a(z0))), A(a(z0)), A(z0))
A(a(f(b, a(x0)))) → c
S tuples:
A(a(z0)) → c1(F(b, a(f(a(z0), b))), A(f(a(z0), b)), F(a(z0), b), A(z0))
F(a(z0), b) → c2(F(b, a(z0)), A(z0))
A(a(f(b, a(x0)))) → c(F(f(b, a(f(a(a(x0)), b))), b), A(a(a(x0))), A(a(x0)), A(x0))
A(a(f(b, a(f(b, a(z0)))))) → c(F(a(f(a(a(a(z0))), b)), b), A(a(a(f(b, a(z0))))), A(a(f(b, a(z0)))), A(f(b, a(z0))))
A(a(f(b, a(z0)))) → c(F(a(f(b, a(f(a(z0), b)))), b), A(a(a(z0))), A(a(z0)), A(z0))
A(a(f(b, a(x0)))) → c
K tuples:none
Defined Rule Symbols:
a, f
Defined Pair Symbols:
A, F
Compound Symbols:
c1, c2, c, c
(5) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
A(a(f(b, a(x0)))) → c
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
a(a(f(b, a(z0)))) → f(a(a(a(z0))), b)
a(a(z0)) → f(b, a(f(a(z0), b)))
f(a(z0), b) → f(b, a(z0))
Tuples:
A(a(z0)) → c1(F(b, a(f(a(z0), b))), A(f(a(z0), b)), F(a(z0), b), A(z0))
F(a(z0), b) → c2(F(b, a(z0)), A(z0))
A(a(f(b, a(x0)))) → c(F(f(b, a(f(a(a(x0)), b))), b), A(a(a(x0))), A(a(x0)), A(x0))
A(a(f(b, a(f(b, a(z0)))))) → c(F(a(f(a(a(a(z0))), b)), b), A(a(a(f(b, a(z0))))), A(a(f(b, a(z0)))), A(f(b, a(z0))))
A(a(f(b, a(z0)))) → c(F(a(f(b, a(f(a(z0), b)))), b), A(a(a(z0))), A(a(z0)), A(z0))
S tuples:
A(a(z0)) → c1(F(b, a(f(a(z0), b))), A(f(a(z0), b)), F(a(z0), b), A(z0))
F(a(z0), b) → c2(F(b, a(z0)), A(z0))
A(a(f(b, a(x0)))) → c(F(f(b, a(f(a(a(x0)), b))), b), A(a(a(x0))), A(a(x0)), A(x0))
A(a(f(b, a(f(b, a(z0)))))) → c(F(a(f(a(a(a(z0))), b)), b), A(a(a(f(b, a(z0))))), A(a(f(b, a(z0)))), A(f(b, a(z0))))
A(a(f(b, a(z0)))) → c(F(a(f(b, a(f(a(z0), b)))), b), A(a(a(z0))), A(a(z0)), A(z0))
K tuples:none
Defined Rule Symbols:
a, f
Defined Pair Symbols:
A, F
Compound Symbols:
c1, c2, c
(7) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
A(
a(
z0)) →
c1(
F(
b,
a(
f(
a(
z0),
b))),
A(
f(
a(
z0),
b)),
F(
a(
z0),
b),
A(
z0)) by
A(a(z0)) → c1(F(b, a(f(b, a(z0)))), A(f(a(z0), b)), F(a(z0), b), A(z0))
A(a(x0)) → c1
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
a(a(f(b, a(z0)))) → f(a(a(a(z0))), b)
a(a(z0)) → f(b, a(f(a(z0), b)))
f(a(z0), b) → f(b, a(z0))
Tuples:
F(a(z0), b) → c2(F(b, a(z0)), A(z0))
A(a(f(b, a(x0)))) → c(F(f(b, a(f(a(a(x0)), b))), b), A(a(a(x0))), A(a(x0)), A(x0))
A(a(f(b, a(f(b, a(z0)))))) → c(F(a(f(a(a(a(z0))), b)), b), A(a(a(f(b, a(z0))))), A(a(f(b, a(z0)))), A(f(b, a(z0))))
A(a(f(b, a(z0)))) → c(F(a(f(b, a(f(a(z0), b)))), b), A(a(a(z0))), A(a(z0)), A(z0))
A(a(z0)) → c1(F(b, a(f(b, a(z0)))), A(f(a(z0), b)), F(a(z0), b), A(z0))
A(a(x0)) → c1
S tuples:
F(a(z0), b) → c2(F(b, a(z0)), A(z0))
A(a(f(b, a(x0)))) → c(F(f(b, a(f(a(a(x0)), b))), b), A(a(a(x0))), A(a(x0)), A(x0))
A(a(f(b, a(f(b, a(z0)))))) → c(F(a(f(a(a(a(z0))), b)), b), A(a(a(f(b, a(z0))))), A(a(f(b, a(z0)))), A(f(b, a(z0))))
A(a(f(b, a(z0)))) → c(F(a(f(b, a(f(a(z0), b)))), b), A(a(a(z0))), A(a(z0)), A(z0))
A(a(z0)) → c1(F(b, a(f(b, a(z0)))), A(f(a(z0), b)), F(a(z0), b), A(z0))
A(a(x0)) → c1
K tuples:none
Defined Rule Symbols:
a, f
Defined Pair Symbols:
F, A
Compound Symbols:
c2, c, c1, c1
(9) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
A(a(x0)) → c1
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
a(a(f(b, a(z0)))) → f(a(a(a(z0))), b)
a(a(z0)) → f(b, a(f(a(z0), b)))
f(a(z0), b) → f(b, a(z0))
Tuples:
F(a(z0), b) → c2(F(b, a(z0)), A(z0))
A(a(f(b, a(x0)))) → c(F(f(b, a(f(a(a(x0)), b))), b), A(a(a(x0))), A(a(x0)), A(x0))
A(a(f(b, a(f(b, a(z0)))))) → c(F(a(f(a(a(a(z0))), b)), b), A(a(a(f(b, a(z0))))), A(a(f(b, a(z0)))), A(f(b, a(z0))))
A(a(f(b, a(z0)))) → c(F(a(f(b, a(f(a(z0), b)))), b), A(a(a(z0))), A(a(z0)), A(z0))
A(a(z0)) → c1(F(b, a(f(b, a(z0)))), A(f(a(z0), b)), F(a(z0), b), A(z0))
S tuples:
F(a(z0), b) → c2(F(b, a(z0)), A(z0))
A(a(f(b, a(x0)))) → c(F(f(b, a(f(a(a(x0)), b))), b), A(a(a(x0))), A(a(x0)), A(x0))
A(a(f(b, a(f(b, a(z0)))))) → c(F(a(f(a(a(a(z0))), b)), b), A(a(a(f(b, a(z0))))), A(a(f(b, a(z0)))), A(f(b, a(z0))))
A(a(f(b, a(z0)))) → c(F(a(f(b, a(f(a(z0), b)))), b), A(a(a(z0))), A(a(z0)), A(z0))
A(a(z0)) → c1(F(b, a(f(b, a(z0)))), A(f(a(z0), b)), F(a(z0), b), A(z0))
K tuples:none
Defined Rule Symbols:
a, f
Defined Pair Symbols:
F, A
Compound Symbols:
c2, c, c1
(11) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
F(
a(
z0),
b) →
c2(
F(
b,
a(
z0)),
A(
z0)) by
F(a(x0), b) → c2(A(x0))
(12) Obligation:
Complexity Dependency Tuples Problem
Rules:
a(a(f(b, a(z0)))) → f(a(a(a(z0))), b)
a(a(z0)) → f(b, a(f(a(z0), b)))
f(a(z0), b) → f(b, a(z0))
Tuples:
A(a(f(b, a(x0)))) → c(F(f(b, a(f(a(a(x0)), b))), b), A(a(a(x0))), A(a(x0)), A(x0))
A(a(f(b, a(f(b, a(z0)))))) → c(F(a(f(a(a(a(z0))), b)), b), A(a(a(f(b, a(z0))))), A(a(f(b, a(z0)))), A(f(b, a(z0))))
A(a(f(b, a(z0)))) → c(F(a(f(b, a(f(a(z0), b)))), b), A(a(a(z0))), A(a(z0)), A(z0))
A(a(z0)) → c1(F(b, a(f(b, a(z0)))), A(f(a(z0), b)), F(a(z0), b), A(z0))
F(a(x0), b) → c2(A(x0))
S tuples:
A(a(f(b, a(x0)))) → c(F(f(b, a(f(a(a(x0)), b))), b), A(a(a(x0))), A(a(x0)), A(x0))
A(a(f(b, a(f(b, a(z0)))))) → c(F(a(f(a(a(a(z0))), b)), b), A(a(a(f(b, a(z0))))), A(a(f(b, a(z0)))), A(f(b, a(z0))))
A(a(f(b, a(z0)))) → c(F(a(f(b, a(f(a(z0), b)))), b), A(a(a(z0))), A(a(z0)), A(z0))
A(a(z0)) → c1(F(b, a(f(b, a(z0)))), A(f(a(z0), b)), F(a(z0), b), A(z0))
F(a(x0), b) → c2(A(x0))
K tuples:none
Defined Rule Symbols:
a, f
Defined Pair Symbols:
A, F
Compound Symbols:
c, c1, c2
(13) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
A(
a(
f(
b,
a(
x0)))) →
c(
F(
f(
b,
a(
f(
a(
a(
x0)),
b))),
b),
A(
a(
a(
x0))),
A(
a(
x0)),
A(
x0)) by
A(a(f(b, a(x0)))) → c(F(f(b, a(f(b, a(a(x0))))), b), A(a(a(x0))), A(a(x0)), A(x0))
A(a(f(b, a(f(b, a(z0)))))) → c(F(f(b, a(f(f(a(a(a(z0))), b), b))), b), A(a(a(f(b, a(z0))))), A(a(f(b, a(z0)))), A(f(b, a(z0))))
A(a(f(b, a(z0)))) → c(F(f(b, a(f(f(b, a(f(a(z0), b))), b))), b), A(a(a(z0))), A(a(z0)), A(z0))
A(a(f(b, a(x0)))) → c
(14) Obligation:
Complexity Dependency Tuples Problem
Rules:
a(a(f(b, a(z0)))) → f(a(a(a(z0))), b)
a(a(z0)) → f(b, a(f(a(z0), b)))
f(a(z0), b) → f(b, a(z0))
Tuples:
A(a(f(b, a(f(b, a(z0)))))) → c(F(a(f(a(a(a(z0))), b)), b), A(a(a(f(b, a(z0))))), A(a(f(b, a(z0)))), A(f(b, a(z0))))
A(a(f(b, a(z0)))) → c(F(a(f(b, a(f(a(z0), b)))), b), A(a(a(z0))), A(a(z0)), A(z0))
A(a(z0)) → c1(F(b, a(f(b, a(z0)))), A(f(a(z0), b)), F(a(z0), b), A(z0))
F(a(x0), b) → c2(A(x0))
A(a(f(b, a(x0)))) → c(F(f(b, a(f(b, a(a(x0))))), b), A(a(a(x0))), A(a(x0)), A(x0))
A(a(f(b, a(f(b, a(z0)))))) → c(F(f(b, a(f(f(a(a(a(z0))), b), b))), b), A(a(a(f(b, a(z0))))), A(a(f(b, a(z0)))), A(f(b, a(z0))))
A(a(f(b, a(z0)))) → c(F(f(b, a(f(f(b, a(f(a(z0), b))), b))), b), A(a(a(z0))), A(a(z0)), A(z0))
A(a(f(b, a(x0)))) → c
S tuples:
A(a(f(b, a(f(b, a(z0)))))) → c(F(a(f(a(a(a(z0))), b)), b), A(a(a(f(b, a(z0))))), A(a(f(b, a(z0)))), A(f(b, a(z0))))
A(a(f(b, a(z0)))) → c(F(a(f(b, a(f(a(z0), b)))), b), A(a(a(z0))), A(a(z0)), A(z0))
A(a(z0)) → c1(F(b, a(f(b, a(z0)))), A(f(a(z0), b)), F(a(z0), b), A(z0))
F(a(x0), b) → c2(A(x0))
A(a(f(b, a(x0)))) → c(F(f(b, a(f(b, a(a(x0))))), b), A(a(a(x0))), A(a(x0)), A(x0))
A(a(f(b, a(f(b, a(z0)))))) → c(F(f(b, a(f(f(a(a(a(z0))), b), b))), b), A(a(a(f(b, a(z0))))), A(a(f(b, a(z0)))), A(f(b, a(z0))))
A(a(f(b, a(z0)))) → c(F(f(b, a(f(f(b, a(f(a(z0), b))), b))), b), A(a(a(z0))), A(a(z0)), A(z0))
A(a(f(b, a(x0)))) → c
K tuples:none
Defined Rule Symbols:
a, f
Defined Pair Symbols:
A, F
Compound Symbols:
c, c1, c2, c
(15) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
A(a(f(b, a(x0)))) → c
(16) Obligation:
Complexity Dependency Tuples Problem
Rules:
a(a(f(b, a(z0)))) → f(a(a(a(z0))), b)
a(a(z0)) → f(b, a(f(a(z0), b)))
f(a(z0), b) → f(b, a(z0))
Tuples:
A(a(f(b, a(f(b, a(z0)))))) → c(F(a(f(a(a(a(z0))), b)), b), A(a(a(f(b, a(z0))))), A(a(f(b, a(z0)))), A(f(b, a(z0))))
A(a(f(b, a(z0)))) → c(F(a(f(b, a(f(a(z0), b)))), b), A(a(a(z0))), A(a(z0)), A(z0))
A(a(z0)) → c1(F(b, a(f(b, a(z0)))), A(f(a(z0), b)), F(a(z0), b), A(z0))
F(a(x0), b) → c2(A(x0))
A(a(f(b, a(x0)))) → c(F(f(b, a(f(b, a(a(x0))))), b), A(a(a(x0))), A(a(x0)), A(x0))
A(a(f(b, a(f(b, a(z0)))))) → c(F(f(b, a(f(f(a(a(a(z0))), b), b))), b), A(a(a(f(b, a(z0))))), A(a(f(b, a(z0)))), A(f(b, a(z0))))
A(a(f(b, a(z0)))) → c(F(f(b, a(f(f(b, a(f(a(z0), b))), b))), b), A(a(a(z0))), A(a(z0)), A(z0))
S tuples:
A(a(f(b, a(f(b, a(z0)))))) → c(F(a(f(a(a(a(z0))), b)), b), A(a(a(f(b, a(z0))))), A(a(f(b, a(z0)))), A(f(b, a(z0))))
A(a(f(b, a(z0)))) → c(F(a(f(b, a(f(a(z0), b)))), b), A(a(a(z0))), A(a(z0)), A(z0))
A(a(z0)) → c1(F(b, a(f(b, a(z0)))), A(f(a(z0), b)), F(a(z0), b), A(z0))
F(a(x0), b) → c2(A(x0))
A(a(f(b, a(x0)))) → c(F(f(b, a(f(b, a(a(x0))))), b), A(a(a(x0))), A(a(x0)), A(x0))
A(a(f(b, a(f(b, a(z0)))))) → c(F(f(b, a(f(f(a(a(a(z0))), b), b))), b), A(a(a(f(b, a(z0))))), A(a(f(b, a(z0)))), A(f(b, a(z0))))
A(a(f(b, a(z0)))) → c(F(f(b, a(f(f(b, a(f(a(z0), b))), b))), b), A(a(a(z0))), A(a(z0)), A(z0))
K tuples:none
Defined Rule Symbols:
a, f
Defined Pair Symbols:
A, F
Compound Symbols:
c, c1, c2
(17) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
A(
a(
f(
b,
a(
f(
b,
a(
z0)))))) →
c(
F(
a(
f(
a(
a(
a(
z0))),
b)),
b),
A(
a(
a(
f(
b,
a(
z0))))),
A(
a(
f(
b,
a(
z0)))),
A(
f(
b,
a(
z0)))) by
A(a(f(b, a(f(b, a(x0)))))) → c(F(a(f(b, a(a(a(x0))))), b), A(a(a(f(b, a(x0))))), A(a(f(b, a(x0)))), A(f(b, a(x0))))
A(a(f(b, a(f(b, a(x0)))))) → c(F(a(f(f(b, a(f(a(a(x0)), b))), b)), b), A(a(a(f(b, a(x0))))), A(a(f(b, a(x0)))), A(f(b, a(x0))))
A(a(f(b, a(f(b, a(f(b, a(z0)))))))) → c(F(a(f(a(f(a(a(a(z0))), b)), b)), b), A(a(a(f(b, a(f(b, a(z0))))))), A(a(f(b, a(f(b, a(z0)))))), A(f(b, a(f(b, a(z0))))))
A(a(f(b, a(f(b, a(z0)))))) → c(F(a(f(a(f(b, a(f(a(z0), b)))), b)), b), A(a(a(f(b, a(z0))))), A(a(f(b, a(z0)))), A(f(b, a(z0))))
A(a(f(b, a(f(b, a(x0)))))) → c(A(a(a(f(b, a(x0))))), A(a(f(b, a(x0)))))
(18) Obligation:
Complexity Dependency Tuples Problem
Rules:
a(a(f(b, a(z0)))) → f(a(a(a(z0))), b)
a(a(z0)) → f(b, a(f(a(z0), b)))
f(a(z0), b) → f(b, a(z0))
Tuples:
A(a(f(b, a(z0)))) → c(F(a(f(b, a(f(a(z0), b)))), b), A(a(a(z0))), A(a(z0)), A(z0))
A(a(z0)) → c1(F(b, a(f(b, a(z0)))), A(f(a(z0), b)), F(a(z0), b), A(z0))
F(a(x0), b) → c2(A(x0))
A(a(f(b, a(x0)))) → c(F(f(b, a(f(b, a(a(x0))))), b), A(a(a(x0))), A(a(x0)), A(x0))
A(a(f(b, a(f(b, a(z0)))))) → c(F(f(b, a(f(f(a(a(a(z0))), b), b))), b), A(a(a(f(b, a(z0))))), A(a(f(b, a(z0)))), A(f(b, a(z0))))
A(a(f(b, a(z0)))) → c(F(f(b, a(f(f(b, a(f(a(z0), b))), b))), b), A(a(a(z0))), A(a(z0)), A(z0))
A(a(f(b, a(f(b, a(x0)))))) → c(F(a(f(b, a(a(a(x0))))), b), A(a(a(f(b, a(x0))))), A(a(f(b, a(x0)))), A(f(b, a(x0))))
A(a(f(b, a(f(b, a(x0)))))) → c(F(a(f(f(b, a(f(a(a(x0)), b))), b)), b), A(a(a(f(b, a(x0))))), A(a(f(b, a(x0)))), A(f(b, a(x0))))
A(a(f(b, a(f(b, a(f(b, a(z0)))))))) → c(F(a(f(a(f(a(a(a(z0))), b)), b)), b), A(a(a(f(b, a(f(b, a(z0))))))), A(a(f(b, a(f(b, a(z0)))))), A(f(b, a(f(b, a(z0))))))
A(a(f(b, a(f(b, a(z0)))))) → c(F(a(f(a(f(b, a(f(a(z0), b)))), b)), b), A(a(a(f(b, a(z0))))), A(a(f(b, a(z0)))), A(f(b, a(z0))))
A(a(f(b, a(f(b, a(x0)))))) → c(A(a(a(f(b, a(x0))))), A(a(f(b, a(x0)))))
S tuples:
A(a(f(b, a(z0)))) → c(F(a(f(b, a(f(a(z0), b)))), b), A(a(a(z0))), A(a(z0)), A(z0))
A(a(z0)) → c1(F(b, a(f(b, a(z0)))), A(f(a(z0), b)), F(a(z0), b), A(z0))
F(a(x0), b) → c2(A(x0))
A(a(f(b, a(x0)))) → c(F(f(b, a(f(b, a(a(x0))))), b), A(a(a(x0))), A(a(x0)), A(x0))
A(a(f(b, a(f(b, a(z0)))))) → c(F(f(b, a(f(f(a(a(a(z0))), b), b))), b), A(a(a(f(b, a(z0))))), A(a(f(b, a(z0)))), A(f(b, a(z0))))
A(a(f(b, a(z0)))) → c(F(f(b, a(f(f(b, a(f(a(z0), b))), b))), b), A(a(a(z0))), A(a(z0)), A(z0))
A(a(f(b, a(f(b, a(x0)))))) → c(F(a(f(b, a(a(a(x0))))), b), A(a(a(f(b, a(x0))))), A(a(f(b, a(x0)))), A(f(b, a(x0))))
A(a(f(b, a(f(b, a(x0)))))) → c(F(a(f(f(b, a(f(a(a(x0)), b))), b)), b), A(a(a(f(b, a(x0))))), A(a(f(b, a(x0)))), A(f(b, a(x0))))
A(a(f(b, a(f(b, a(f(b, a(z0)))))))) → c(F(a(f(a(f(a(a(a(z0))), b)), b)), b), A(a(a(f(b, a(f(b, a(z0))))))), A(a(f(b, a(f(b, a(z0)))))), A(f(b, a(f(b, a(z0))))))
A(a(f(b, a(f(b, a(z0)))))) → c(F(a(f(a(f(b, a(f(a(z0), b)))), b)), b), A(a(a(f(b, a(z0))))), A(a(f(b, a(z0)))), A(f(b, a(z0))))
A(a(f(b, a(f(b, a(x0)))))) → c(A(a(a(f(b, a(x0))))), A(a(f(b, a(x0)))))
K tuples:none
Defined Rule Symbols:
a, f
Defined Pair Symbols:
A, F
Compound Symbols:
c, c1, c2, c
(19) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
A(
a(
f(
b,
a(
z0)))) →
c(
F(
a(
f(
b,
a(
f(
a(
z0),
b)))),
b),
A(
a(
a(
z0))),
A(
a(
z0)),
A(
z0)) by
A(a(f(b, a(z0)))) → c(F(a(f(b, a(f(b, a(z0))))), b), A(a(a(z0))), A(a(z0)), A(z0))
A(a(f(b, a(x0)))) → c(A(a(a(x0))))
(20) Obligation:
Complexity Dependency Tuples Problem
Rules:
a(a(f(b, a(z0)))) → f(a(a(a(z0))), b)
a(a(z0)) → f(b, a(f(a(z0), b)))
f(a(z0), b) → f(b, a(z0))
Tuples:
A(a(z0)) → c1(F(b, a(f(b, a(z0)))), A(f(a(z0), b)), F(a(z0), b), A(z0))
F(a(x0), b) → c2(A(x0))
A(a(f(b, a(x0)))) → c(F(f(b, a(f(b, a(a(x0))))), b), A(a(a(x0))), A(a(x0)), A(x0))
A(a(f(b, a(f(b, a(z0)))))) → c(F(f(b, a(f(f(a(a(a(z0))), b), b))), b), A(a(a(f(b, a(z0))))), A(a(f(b, a(z0)))), A(f(b, a(z0))))
A(a(f(b, a(z0)))) → c(F(f(b, a(f(f(b, a(f(a(z0), b))), b))), b), A(a(a(z0))), A(a(z0)), A(z0))
A(a(f(b, a(f(b, a(x0)))))) → c(F(a(f(b, a(a(a(x0))))), b), A(a(a(f(b, a(x0))))), A(a(f(b, a(x0)))), A(f(b, a(x0))))
A(a(f(b, a(f(b, a(x0)))))) → c(F(a(f(f(b, a(f(a(a(x0)), b))), b)), b), A(a(a(f(b, a(x0))))), A(a(f(b, a(x0)))), A(f(b, a(x0))))
A(a(f(b, a(f(b, a(f(b, a(z0)))))))) → c(F(a(f(a(f(a(a(a(z0))), b)), b)), b), A(a(a(f(b, a(f(b, a(z0))))))), A(a(f(b, a(f(b, a(z0)))))), A(f(b, a(f(b, a(z0))))))
A(a(f(b, a(f(b, a(z0)))))) → c(F(a(f(a(f(b, a(f(a(z0), b)))), b)), b), A(a(a(f(b, a(z0))))), A(a(f(b, a(z0)))), A(f(b, a(z0))))
A(a(f(b, a(f(b, a(x0)))))) → c(A(a(a(f(b, a(x0))))), A(a(f(b, a(x0)))))
A(a(f(b, a(z0)))) → c(F(a(f(b, a(f(b, a(z0))))), b), A(a(a(z0))), A(a(z0)), A(z0))
A(a(f(b, a(x0)))) → c(A(a(a(x0))))
S tuples:
A(a(z0)) → c1(F(b, a(f(b, a(z0)))), A(f(a(z0), b)), F(a(z0), b), A(z0))
F(a(x0), b) → c2(A(x0))
A(a(f(b, a(x0)))) → c(F(f(b, a(f(b, a(a(x0))))), b), A(a(a(x0))), A(a(x0)), A(x0))
A(a(f(b, a(f(b, a(z0)))))) → c(F(f(b, a(f(f(a(a(a(z0))), b), b))), b), A(a(a(f(b, a(z0))))), A(a(f(b, a(z0)))), A(f(b, a(z0))))
A(a(f(b, a(z0)))) → c(F(f(b, a(f(f(b, a(f(a(z0), b))), b))), b), A(a(a(z0))), A(a(z0)), A(z0))
A(a(f(b, a(f(b, a(x0)))))) → c(F(a(f(b, a(a(a(x0))))), b), A(a(a(f(b, a(x0))))), A(a(f(b, a(x0)))), A(f(b, a(x0))))
A(a(f(b, a(f(b, a(x0)))))) → c(F(a(f(f(b, a(f(a(a(x0)), b))), b)), b), A(a(a(f(b, a(x0))))), A(a(f(b, a(x0)))), A(f(b, a(x0))))
A(a(f(b, a(f(b, a(f(b, a(z0)))))))) → c(F(a(f(a(f(a(a(a(z0))), b)), b)), b), A(a(a(f(b, a(f(b, a(z0))))))), A(a(f(b, a(f(b, a(z0)))))), A(f(b, a(f(b, a(z0))))))
A(a(f(b, a(f(b, a(z0)))))) → c(F(a(f(a(f(b, a(f(a(z0), b)))), b)), b), A(a(a(f(b, a(z0))))), A(a(f(b, a(z0)))), A(f(b, a(z0))))
A(a(f(b, a(f(b, a(x0)))))) → c(A(a(a(f(b, a(x0))))), A(a(f(b, a(x0)))))
A(a(f(b, a(z0)))) → c(F(a(f(b, a(f(b, a(z0))))), b), A(a(a(z0))), A(a(z0)), A(z0))
A(a(f(b, a(x0)))) → c(A(a(a(x0))))
K tuples:none
Defined Rule Symbols:
a, f
Defined Pair Symbols:
A, F
Compound Symbols:
c1, c2, c, c, c
(21) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
A(
a(
z0)) →
c1(
F(
b,
a(
f(
b,
a(
z0)))),
A(
f(
a(
z0),
b)),
F(
a(
z0),
b),
A(
z0)) by
A(a(x0)) → c1(A(f(a(x0), b)), F(a(x0), b), A(x0))
(22) Obligation:
Complexity Dependency Tuples Problem
Rules:
a(a(f(b, a(z0)))) → f(a(a(a(z0))), b)
a(a(z0)) → f(b, a(f(a(z0), b)))
f(a(z0), b) → f(b, a(z0))
Tuples:
F(a(x0), b) → c2(A(x0))
A(a(f(b, a(x0)))) → c(F(f(b, a(f(b, a(a(x0))))), b), A(a(a(x0))), A(a(x0)), A(x0))
A(a(f(b, a(f(b, a(z0)))))) → c(F(f(b, a(f(f(a(a(a(z0))), b), b))), b), A(a(a(f(b, a(z0))))), A(a(f(b, a(z0)))), A(f(b, a(z0))))
A(a(f(b, a(z0)))) → c(F(f(b, a(f(f(b, a(f(a(z0), b))), b))), b), A(a(a(z0))), A(a(z0)), A(z0))
A(a(f(b, a(f(b, a(x0)))))) → c(F(a(f(b, a(a(a(x0))))), b), A(a(a(f(b, a(x0))))), A(a(f(b, a(x0)))), A(f(b, a(x0))))
A(a(f(b, a(f(b, a(x0)))))) → c(F(a(f(f(b, a(f(a(a(x0)), b))), b)), b), A(a(a(f(b, a(x0))))), A(a(f(b, a(x0)))), A(f(b, a(x0))))
A(a(f(b, a(f(b, a(f(b, a(z0)))))))) → c(F(a(f(a(f(a(a(a(z0))), b)), b)), b), A(a(a(f(b, a(f(b, a(z0))))))), A(a(f(b, a(f(b, a(z0)))))), A(f(b, a(f(b, a(z0))))))
A(a(f(b, a(f(b, a(z0)))))) → c(F(a(f(a(f(b, a(f(a(z0), b)))), b)), b), A(a(a(f(b, a(z0))))), A(a(f(b, a(z0)))), A(f(b, a(z0))))
A(a(f(b, a(f(b, a(x0)))))) → c(A(a(a(f(b, a(x0))))), A(a(f(b, a(x0)))))
A(a(f(b, a(z0)))) → c(F(a(f(b, a(f(b, a(z0))))), b), A(a(a(z0))), A(a(z0)), A(z0))
A(a(f(b, a(x0)))) → c(A(a(a(x0))))
A(a(x0)) → c1(A(f(a(x0), b)), F(a(x0), b), A(x0))
S tuples:
F(a(x0), b) → c2(A(x0))
A(a(f(b, a(x0)))) → c(F(f(b, a(f(b, a(a(x0))))), b), A(a(a(x0))), A(a(x0)), A(x0))
A(a(f(b, a(f(b, a(z0)))))) → c(F(f(b, a(f(f(a(a(a(z0))), b), b))), b), A(a(a(f(b, a(z0))))), A(a(f(b, a(z0)))), A(f(b, a(z0))))
A(a(f(b, a(z0)))) → c(F(f(b, a(f(f(b, a(f(a(z0), b))), b))), b), A(a(a(z0))), A(a(z0)), A(z0))
A(a(f(b, a(f(b, a(x0)))))) → c(F(a(f(b, a(a(a(x0))))), b), A(a(a(f(b, a(x0))))), A(a(f(b, a(x0)))), A(f(b, a(x0))))
A(a(f(b, a(f(b, a(x0)))))) → c(F(a(f(f(b, a(f(a(a(x0)), b))), b)), b), A(a(a(f(b, a(x0))))), A(a(f(b, a(x0)))), A(f(b, a(x0))))
A(a(f(b, a(f(b, a(f(b, a(z0)))))))) → c(F(a(f(a(f(a(a(a(z0))), b)), b)), b), A(a(a(f(b, a(f(b, a(z0))))))), A(a(f(b, a(f(b, a(z0)))))), A(f(b, a(f(b, a(z0))))))
A(a(f(b, a(f(b, a(z0)))))) → c(F(a(f(a(f(b, a(f(a(z0), b)))), b)), b), A(a(a(f(b, a(z0))))), A(a(f(b, a(z0)))), A(f(b, a(z0))))
A(a(f(b, a(f(b, a(x0)))))) → c(A(a(a(f(b, a(x0))))), A(a(f(b, a(x0)))))
A(a(f(b, a(z0)))) → c(F(a(f(b, a(f(b, a(z0))))), b), A(a(a(z0))), A(a(z0)), A(z0))
A(a(f(b, a(x0)))) → c(A(a(a(x0))))
A(a(x0)) → c1(A(f(a(x0), b)), F(a(x0), b), A(x0))
K tuples:none
Defined Rule Symbols:
a, f
Defined Pair Symbols:
F, A
Compound Symbols:
c2, c, c, c, c1
(23) CpxTrsMatchBoundsTAProof (EQUIVALENT transformation)
A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 0.
The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by:
final states : [1, 2]
transitions:
b0() → 0
a0(0) → 1
f0(0, 0) → 2
(24) BOUNDS(O(1), O(n^1))